AASHTOWare Pavement ME: JPCP Walk-through and Sensitivity Analysis

Jim Powell, P.E. Executive Director Northwest Chapter American Concrete Pavement Association

Outline

- Review of Pavement ME's Concrete Design Options
- JPCP Design Input Walkthrough
- Example Runs and How to Interpret Them
- Review of Critical Inputs
- Engineering Solutions
- ME Calibration Impact
- Additional Resources

MEPDG / DARWin-ME / AASHTOWare Pavement ME

Concrete Pavement Design Options

Pavement ME's Concrete Pavement Designs

New Pavement

- Jointed Plain Concrete Pavement (JPCP)
- Continuously Reinforced Concrete Pavement (CRCP)
- Overlay
 - Bonded PCC over JPCP or CRCP
 - Unbonded JPCP or CRCP over JPCP or CRCP
 - JPCP over AC
 - CRCP over AC
 - SJPCP over AC

Jointed Plain Concrete Pavement (JPCP)

- JPCP Design Process
 - General Info and Performance Criteria
 - Traffic Details
 - Climate
 - Characterizing Pavement Structure
 - JPCP Design Properties

Jointed Plain Concrete Pavement (JPCP)

General Information

- Design Life
- Construction/Opening Timeframe

		Project1:Projec	ct* Project1:Traffic*	Project	1:Clin
		General Information	New Pavement		-
		Pavement type:	Jointed Plain Concrete F	Pavement (J	-
		Design life (years):		30	
		Pavement construction	on: June	▼ 2020	J I
		Traffic opening:	September	- 2020	-
		Special traffic loa	ading for flexible paveme	ents	
@90% Rel @90% Rel imit	0.12 0.10 0.08 0.06 0.04		Predicted Faulting		Jan Fault @90% Rel Feb Fault @90% Rel Mar Fault @90% Rel Apr Fault @90% Rel Jun Fault @90% Rel Jul Fault @90% Rel Jul Fault @90% Rel Sep Fault @90% Rel Oct Fault @90% Rel Dec Fault @90% Rel Dec Fault @90% Rel Fault Limit
	0.02				1

Jointed Plain Concrete Pavement (JPCP)

• Performance Indicators and Failure Criteria:

Performance Criteria	Limit	Reliability
Initial IRI (in/mile)	63	
Terminal IRI (in/mile)	172	90
JPCP transverse cracking (percent slabs)	15	90
Mean joint faulting (in)	0.12	90

JPCP – Traffic Details

r	TAC Pavement ME	Exam:Proje	d/	TAC Pav	ement ME	Exam:Traffic	· · ·	×	
HAC Pavement ME Examp	21 🔟			Vehi	cle Class Di	stribution and Growth	Load Default Distribution Hourly Adjustment		
Traffic Single Axle Distrib	Two-way AADTT	8000		^ Ve	hicle Class	Distribution (%) Growth	Rate (%) Growth Function		
- Tandem Axle Distr	Number of lanes 🗹	3		Cla	s 4	1.7 3	Linear V 400-01 1:00 am 2.3		
Tridem Axle District Ourand Axle District	Percent trucks in	50	_	Clas	s 5	19.3 3	Linear V 200 am 23		
- Climate	Operational spec	60	75 Invest Traffic Classification (TTC) Groups						- 0
JPCP Design Propertix	✓ Traffic Capacity				e classified	non (rre) ereeps		_	
Pavement Structure	Traffic Capacity	Not enfor	Gene	eneral category: Principal Aterials - Interstates and Defense Routes (0)					
Layer 2 Non-stabil	Average axle wic	8.5	Use	• TT	Bus(%)	Principal Arterials - Interstates Principal Arterials - Other (1)	s and Defense Routes (0)		
Layer 3 Subgrade	Tandem axle spa	51.6		• 5	(2%)	Minor Aterials (2)		Vahiela Class	Distribution
Project Specific Calibred S	Dual tire spacing	12	177	• 8	(2%)	Major Collectors (3) Minor Collectors (4)		Venicle Class	Decest (
Jer Buvky	Quad axle spacif	120	-	• 11	(22)	Local Routes and Streets (5)	1 Mound is take institute while which have a second ways with already has have been as	Class	Percent (
- Que Optimization	ire pressure (pt 🗸				1.				
Optimization	Tridem axle spac	49.2	1	13	(22)	(\$10%)	Moved truck traffic with about equal percentage of single-trailer orders.	Class 4	1.3
Detinization PDF Output Report Multiple Project Summary	Tridem axle spac	49.2		13	(<2%)	(>10%)	Moved truck stantic with a higher percentage of single-trailer stocks. Moved truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-unit trucks	Class 4 Class 5	8.5
Detimization PDF Output Report Autiple Project Summary Satch Run Tools	Tridem axle spac ✓ Lateral Wander Design lane widt ✓ Mean wheel loca ✓	49.2 12 18		13 16	(<2%) (<2%)	(>10%) (>10%) (>10%)	Moved truck traffic with about equal percentage of single-trailer trucks. Mixed truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-unit trucks. Predominantly single-trailer trucks.	Class 5 Class 6	8.5
Optimization PDF Output Report Autiple Project Summary Satch Run fools ME Design Calibration Factors	Tridem axle spact Tridem axle spact Lateral Wander Design Iane widt Mean wheel loca Traffic wander st	49.2 12 18 10		13 16 • 3 7	(<2%) (<2%) (<2%)	(>10%) (>10%) (2 - 10%) (2 - 10%)	Moved truck traffic with a higher percentage of single-trailer trucks. Mixed truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Mixed truck traffic with a higher percentage of single-trailer trucks	Class 4 Class 5 Class 6 Class 7	8.5 2.8 0.3
Optimization PDF Output Report Autiple Project Summary latch Run fools AE Design Calibration Factors	Tire pressure (pt 🗸 Tridem axle spac 🖌 V Lateral Wander Design lane widt 🗹 Mean wheel loca 🗸 Traffic wander st 🗸 V Wheelbase Average spacing 🗹	49.2 12 18 10		13 16 3 7	(<2%) (<2%) (<2%) (<2%) (<2%)	(>10%) (>10%) (2 - 10%) (2 - 10%) (2 - 10%)	Moved truck static with a higher percentage of single-trailer stocks. Mixed truck staffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Mixed truck traffic with a higher percentage of single-trailer trucks. Mixed truck traffic with a higher percentage of single-trailer trucks.	Class 4 Class 5 Class 6 Class 7 Class 8	1.3 8.5 2.8 0.3 7.6
Optimization PDF Output Report Public Project Summary latch Run ools 1E Design Calibration Factors	Tire pressure (pt ♥ Tridem axle spac ♥ ♥ Lateral Wander Design lane widt ♥ Mean wheel locs ♥ Traffic wander st ♥ ♥ Wheelbase Average spacing ♥ Average spacing ♥	49.2 12 18 10 18 15		13 16 3 7 10	(<2%) (<2%) (<2%) (<2%) (<2%)	(>10%) (>10%) (2 - 10%) (2 - 10%) (2 - 10%) (2 - 10%)	Mixed truck static with a higher percentage of single-trailer stocks. Mixed truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Mixed truck traffic with a higher percentage of single-trailer trucks. Mixed truck traffic with about equal percentages of single-unit and single-trailer Percentage of single-unit and single-trailer	Class 4 Class 5 Class 6 Class 7 Class 8 Class 9	8.5 2.8 0.3 7.6 74
Optimization PDF Output Report Autiple Project Summary Ratch Run Tools AE Design Calibration Factors	Tridem axle spact Tridem axle spact Lateral Wander Design lane widt Mean wheel loca Traffic wander st Wheelbase Average spacing Percent trucks w	49.2 12 18 10 18 15 61		13 16 • 3 7 10 15	(<2%) (<2%) (<2%) (<2%) (<2%) (<2%)	(>10%) (>10%) (2 - 10%) (2 - 10%) (2 - 10%) (2 - 10%) (2 - 10%)	Moved truck stattic with a higher percentage of single-trailer stocks. Moved truck staffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Moved truck traffic with a higher percentage of single-trailer trucks. Moved truck traffic with a bout equal percentages of single-unit and single-trailer Predominantly single-unit trucks. Predominantly single-unit trucks.	Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10	1.3 8.5 2.8 0.3 7.6 74 1.2
Optimization PDF Output Report Multiple Project Summary Satch Run Fools ME Design Calibration Factors	Tire pressure (pt Tridem axle spac Lateral Wander Design lane widt Mean wheel loca Traffic wander st Wheelbase Average spacing Average spacing Percent trucks w Percent trucks w Percen	49.2 12 18 10 18 15 61 22 17		13 16 3 7 10 15 1	(<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%)	(>10%) (>10%) (2 - 10%) (2 - 10%) (2 - 10%) (2 - 10%) (2 - 10%) (2 - 10%) (2 - 10%)	Moved truck stattic with a higher percentage of single-trailer stocks. Moved truck staffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Moved truck traffic with a higher percentage of single-trailer trucks. Moved truck traffic with a bout equal percentages of single-unit and single-trailer Predominantly single-unit trucks. Predominantly single-trailer trucks. Predominantly single-trailer trucks.	Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11	1.3 8.5 2.8 0.3 7.6 74 1.2 3.4
Optimization PDF Output Report Autiple Project Summary Ratch Run Tools ME Design Calibration Factors	Tire pressure (pt Tridem axle spac Lateral Wander Design lane widt Mean wheel loca Traffic wander st Wheelbase Average spacing Average spacing Percent trucks w Percent trucks w Percent trucks w Traffic Capacity Cap	49.2 12 18 10 18 15 61 22 17		13 16 3 7 10 15 1 1 2	(<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (>2%)	(>10%) (>10%) (2 - 10%) (2 - 10%)	Moved truck static with a higher percentage of single-trailer trucks. Mixed truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Mixed truck traffic with a higher percentage of single-trailer trucks. Mixed truck traffic with a higher percentage of single-trailer trucks. Mixed truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-unit trucks. Predominantly single-trailer trucks. Predominantly single-trailer trucks. Predominantly single-trailer trucks.	Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12	1.3 8.5 2.8 0.3 7.6 74 1.2 3.4 0.6
Optimization PDF Output Report Multiple Project Summary Batch Run Fools ME Design Calibration Factors	Tridem axle spac (*) Tridem axle spac (*) Lateral Wander Design lane widt (*) Mean wheel loca (*) Traffic wander st (*) Wheelbase Average spacing (*) Average spacing (*) Percent trucks (*) Percent	49.2 12 18 10 18 15 61 22 17		13 16 3 7 10 15 1 1 2 4	(<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%)	(>10%) (>10%) (2 - 10%) (2	Moved truck static with a higher percentage of single-trailer stocks. Mixed truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Mixed truck traffic with a higher percentage of single-trailer trucks. Mixed truck traffic with a higher percentage of single-trailer trucks. Mixed truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-unit trucks. Predominantly single-trailer trucks with a low percentage of single-unit trucks. Predominantly single-trailer trucks with a low to moderate amount of single-unit	Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13	1.3 8.5 2.8 0.3 7.6 74 1.2 3.4 0.6 0.3
Optimization PDF Output Report Autiple Project Summary Satch Run Fools ME Design Calibration Factors	Tridem axle spac Tridem axle spac Lateral Wander Design Iane widt Mean wheel loca Traffic wander st Wheelbase Average spacing Average spacing Percent trucks w Percent trucks w Traffic Capacity Cap	49.2 12 18 10 18 15 61 22 17		13 16 3 7 10 15 1 2 2 4 6	(<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (>2%) (>2%) (>2%) (>2%)	(>10%) (>10%) (>10%) (2 - 10%) (2 - 10%) (2 - 10%) (2 - 10%) (2 - 10%) (<2%) (<2%) (<2%) (<2%)	Moved truck static with a higher percentage of single-unit and single-trailer Moved truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Moved truck traffic with a higher percentage of single-trailer trucks. Moved truck traffic with a higher percentage of single-trailer trucks. Moved truck traffic with a bout equal percentages of single-unit and single-trailer Predominantly single-unit trucks. Predominantly single-trailer trucks with a low percentage of single-unit trucks. Predominantly single-trailer trucks with a low to moderate amount of single-unit Moved truck traffic with a higher percentage of single-unit trucks.	Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 10 Class 11 Class 12 Class 13	1.3 8.5 2.8 0.3 7.6 74 1.2 3.4 0.6 0.3
Optimization PDF Output Report Autiple Project Summary Batch Run Tools ME Design Calibration Factors	Tridem axle spac Tridem axle spac Lateral Wander Design Iane widt Mean wheel loca Traffic wander st Wheelbase Average spacing Average spacing Percent trucks w Percent trucks w Percent trucks w Traffic Capacity Cap	49.2 12 18 10 18 15 61 22 17		13 16 3 7 10 15 1 1 2 4 6 9	(<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (>2%) (>2%) (>2%) (>2%) (>2%) (>2%)	(>10%) (>10%) (2 - 10%) (2	Moved truck static with a higher percentage of single-unit and single-trailer Mixed truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Mixed truck traffic with a higher percentage of single-trailer trucks. Mixed truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Mixed truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Predominantly single-trailer trucks. Predominantly single-trailer trucks. Predominantly single-trailer trucks with a low percentage of single-unit trucks. Predominantly single-trailer trucks with a low to moderate amount of single-unit Mixed truck traffic with a higher percentage of single-unit trucks. Mixed truck traffic with a higher percentage of single-unit trucks.	Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13	1.3 8.5 2.8 0.3 7.6 74 1.2 3.4 0.6 0.3
Optimization PDF Output Report Autiple Project Summary Natch Run Tools NE Design Calibration Factors	Tridem axle spac Tridem axle spac Lateral Wander Design lane widt Mean wheel loca Traffic wander st Wheelbase Average spacing Average spacing Percent trucks w Percent	49.2 12 18 10 18 15 61 22 17 Prope		13 16 3 7 10 15 1 1 2 4 6 9 12	(<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (>2%) (>2%) (>2%) (>2%) (>2%)	(>10%) (>10%) (2 - 10%) (2	Moved truck static with a higher percentage of single-trailer stocks. Moved truck staffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Moved truck traffic with a higher percentage of single-trailer trucks. Moved truck traffic with a bout equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Moved truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Predominantly single-trailer trucks. Predominantly single-trailer trucks. Predominantly single-trailer trucks. Predominantly single-trailer trucks with a low percentage of single-unit trucks. Predominantly single-trailer trucks with a low to moderate amount of single-unit Moved truck traffic with a higher percentage of single-unit trucks. Moved truck traffic with a bout equal percentages of single-unit and single-trailer Moved truck traffic with a bout equal percentages of single-unit and single-trailer Moved truck traffic with a higher percentage of single-unit trucks. Moved truck traffic with a higher percentage of single-unit trucks.	Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 12 Class 13	1.3 8.5 2.8 0.3 7.6 74 1.2 3.4 0.6 0.3
Optimization PDF Output Report Nutiple Project Summary Batch Run Tools ME Design Calibration Factors	Tridem axle spac Tridem axle spac Lateral Wander Design Iane widt Mean wheel loca Traffic wander st Wheelbase Average spacing Average spacing Percent trucks w Percent trucks w Percent trucks w Traffic Capacity Cap Error List Project Object	49.2 12 18 10 18 15 61 22 17 Prope		13 16 3 7 10 15 1 1 2 4 6 9 12 14	(<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (<2%) (>2%) (>2%) (>2%) (>2%) (>2%) (>2%) (>2%) (>2%)	(>10%) (>10%) (>10%) (2 - 10%) (2 -	Moved truck static with a higher percentage of single-unit and single-trailer Predominantly single-unit trucks. Predominantly single-trailer trucks. Moved truck traffic with a higher percentage of single-trailer trucks. Moved truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Moved truck traffic with about equal percentages of single-unit and single-trailer Predominantly single-trailer trucks. Predominantly single-trailer trucks with a low percentage of single-unit trucks. Predominantly single-trailer trucks with a low to moderate amount of single-unit Moved truck traffic with a higher percentage of single-unit trucks. Moved truck traffic with about equal percentages of single-unit and single-trailer Moved truck traffic with about equal percentages of single-unit and single-trailer Moved truck traffic with a higher percentage of single-unit trucks. Predominantly single-unit trucks.	Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13	1.3 8.5 2.8 0.3 7.6 74 1.2 3.4 0.6 0.3

JPCP – Climate

											a x
Files 🕶 📄 👝 📖 💷	Con.					R 🔺 📣		0 6			
		-		hobes	Vinu			SN K.			
TAC P	avement ME Ex	am:Pr	roject	TACI	Pavem	ent ME Exam: Traff	ic* T	AC Pave	ment ME Exa:Cl	imate	• ×
Projects	100					Summary Hourt	dimate.	data			
Talka					_	Thousand the second second	Carriado	uata			
Sincle Ayle Distrib	te Station				1	🔪 🔠 24 🖾					
- Tandem Axle Dist	on (It)		118	upcu		✓ Climate S	ummary				
Tridem Axle Distrit	e station		11158	UNGH	PAL	Mean annus	al air tem	oecature.	deg F)	51.9	
Quad Axle Distribu	DUse single weather station Create a virtual weather station 38.8										
	e Cev	State (de	ecimals (d	ecimal	Sevation	Description	firstMont	lastMonth	^	459.9	
JPCP Design Propertie	- 4	de	grees) de	egrees)	U				whaw cycles	53	
Pavement Structure	PITTSBURGH	PA 40.9	501 -80	0.231 1	18	PITTSBURGH INTL AIRPOR	T 7/1996	2/2005		213.9	
Layer 1 PCC : JPC	PITTSBURGH	PA 40.	355 -75	9.922 12	140	ALLEGHENY COUNTY AIRP	. 2/1999	2/2006			
Layer 2 Non-stabil U 31.4	WHEELING	WV 40.	176 -80	1647 12	00	WHEELING OHIO COUNTY	. 4/1998	2/2005	(deg F)	29.2	
Layer 3 Subgrade	TOUNGSTOWN	UH 41.	254 -84	16/4 1	200	TOUNGSTOWN WARREN .	1/1996	2/2005	(deg F)	33.6	
Project Specific Calibr	NEW PHILADEL	04 40	47 .81	1.42 11	0	HARRY CLEVER DELD AR	2/1668	2/2005	reg F)	53.0	
Cetiziation	puon or object			1.46 0		Average ter	marahura	in May (dea E)	61.1	
PDE O tout Report Directi	Direction of travel				Average temperature in June (deg F) 68.6			68.6			
Mittiple Project Summary	y name/identifier	r				Average ter	nperature	in July (dea F)	72.2	
Batch Bun	t de la contract					Average ter	nperature	in Augus	t (deg F)	70.8	
Tools Here La	tation (miles)	Ester				Average ter	nperature	in Septe	mber (deg F)	64.3	
ME Design Calibration Factors	ckedr	raise				Average ter	nperature	in Octob	er (deg F)	52.7	
Paviel	an Number	0				Average ter	nperature	in Nover	mber (deg F)	43.9	
State	on nonicei	•				Average ter	nperature	in Decer	mber (deg F)	32.9	
To stat	ion (miles)										
User d	efined field 1										
User d	efined field 2										
					_	Mean annual	air temp	arature (d	en F)		
Elevation	(11) (the site Eleve	tion in u	and to a	datarmia	a the						
lapse amo	unt (laose rate is	s the rat	te which	temper	atures.						
Care Link											B. 14
Error List											4 X
Projec	t Object	Prop	perty	Des	oription						

JPCP – Climate

-

E SEARCH MAP DATA A	NALYSIS VISUALIZATION TOOLS LIBRARY HELP MYLTPP NON-LTPP					
d Sections 🛞 🛞 🕐	MERRA Climate Data for MEPDG Inputs					
ieral	There are 2514 of 2514 sections currently selected. 🖌 🔶 + Show Sections 🛄 Go To					
ge (Since Original Construction)	By Section By Map					
idy nitoring Status	Please select the location from map or type the address in search box below;					
ection	Search Location Search					
aintenance and Rehabilitation oadway Functional Class						
clure	Map Setellite Canada Mudion Bay					
urface Type						
ase Type	on other					
abgrade type						
nate	WA WY NO WY					
nate Imatic Region						
Imatic Region reczing Index (Annual) recipitation (Annual)	Wa Wr WO WW W W W W W W W W W W W W W W W					
natio Ilmatic Region reczing Index (Annual) recipitation (Annual) emperature (Annual)	wa wr wo wr w w w w w w w w w w w w w w w					
Inatic Region Imatic Region recipitation (Annual) Imperature (Annual) Fic	WA MY NO WY W W W W W W W W W W W W W W W W W W					
Imatic Region reczing Index (Annual) recipitation (Annual) emperature (Annual) ffic wg. Annual Daily Traffic (AADT) wg. Annual Daily Truck Traffic AADTT)	We					

JPCP – Characterizing Pavement Structure

oplorer Q X	TAC Pavement ME ExaProject	💈 🥨 🐴 🎒 🖳 🔂 🥐	n:Climate	_	• X	Stop All Analysis	
Projects	General Information	Performance Criteria		Limit	Reliability		
E- Traffic	Design type: New Pavement ~	Initial IRI (n/mle)		63			
- Single Axle Distrit	Pavement type: Jointed Plain Concrete V	Teminal IRI (in/mile)		172	90		
Tandem Avle Dis	Design life (years): 35 V	JPCP transverse cracking (percent slabs)		15	90		
Quad Axle Distrib		Mean joint faulting (in)		0.12	90		
Climate	Pavement construction: June v 2020 v						
JPCP Design Propert Pavement Structure	Traffic opening: Septen v 2020 v						
Layer 1 PCC : JP	Special traffic loading for flexible parements						
- Layer 2 Non-stab	pecial a drife realing for resource parentering	Layer 1 PCC: JPCP Default			~		
Project Specific Calib	Add Layer 🗱 Remove Layer	01 01 m					
- Sensitivity		Cementitious material content (lb/vd'3)	✓ 525		•		
PDF Output Report		Cement type	Type I (1)				
-T Multiple Project Summary		Water to cement ratio	0.42				
- 🔁 Batch Run	Click here to edit Laver 1 PCC : JPCP Detaut	Reversible shrinkage (%)	S0		_		
Tools ME Design Calibration Eactor		> PCC zero-stress temperature (deg F)	Calculated				
		Time to develop 50% of ultimate shrinkage (days)	35		_		
	Click here to edit Layer 2 Non-stabilized Base	 Vibrate shrinkage (microstrain) Strength 	588.5 (calculated)				
	at the the	PCC strength and modulus	Level:3 Rupture(550) Modulus(4	(000000)	100		
	Click here to edit Layer 3 Subgrade : A-5	✓ Identifiers			•		
	and the second second	Approver Person who approved use of this object/material/project					
	From Link						
	Citor List				¥ ^	4	

~	PCC							
	Poisson's ratio	✓ 0.2						
	Thickness (in)	✓ 11						
	Unit weight (pcf)	✓ 150						
~	Thermal							
	PCC coefficient of thermal expansion (in/in/deg F x 10 ⁻⁶	5.5						
	PCC heat capacity (BTU/lb-deg F)	✓ 0.28						
	PCC thermal conductivity (BTU/hr-ft-deg F)	✓ 1.25						
~	Mix							
	Aggregate type	Limestone (1)						
	Cementitious material content (Ib/yd^3)	✓ 525						
	Cement type	Type I (1)						
	Water to cement ratio	✓ 0.42						
	Curing method	Curing Compound						
	Reversible shrinkage (%)	✓ 50						
>	PCC zero-stress temperature (deg F)	Calculated						
	Time to develop 50% of ultimate shrinkage (days)	✓ 35						
>	Ultimate shrinkage (microstrain)	588.5 (calculated)						
~	Strength							
	PCC strength and modulus	Level:3 Rupture(550) Modulus(4000000)						

Let's Break it Down

~	PCC		
	Poisson's ratio	✓ 0.2	
	Thickness (in)	✓ 11	
	Unit weight (pcf)	✓ 150	

- Poisson's Ratio
 0.2 (Semi-constant, ranges from 0.15 to 0.2)
- Thickness What we're designing for.
- Unit Weight

- 150 lb/ft³ (default)
 - Typical range 140-155 lb/ft³
 - (Semi-constant; default is fine in absence of actual mix data)

Thermal

PCC coefficient of thermal expansion (in/in/deg F x 10^-6)	✓	5.5
PCC heat capacity (BTU/Ib-deg F)	✓	0.28
PCC thermal conductivity (BTU/hr-ft-deg F) [✓	1.25

- CTE
- Heat Capacity
- Typical range 4 7 *10⁻⁶/°F (dependent on aggregate type)*
- 0.28 BTU/Ib-degree F (Semi-constant)
- Thermal
 1.25 BTU/hr-ft-deg F (Semi-constant)
 Conductivity

* https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/pccp/thermal.cfm

~	Mix				
	Aggregate type	Limestone (1)			
	Cementitious material content (lb/yd^3)	✓ 525			
	Cement type	Type I (1)			
	Water to cement ratio	✓ 0.42			
	Curing method	Curing Compound			
	Reversible shrinkage (%)	✓ 50			
>	PCC zero-stress temperature (deg F)	Calculated			
	Time to develop 50% of ultimate shrinkage (days)	✓ 35			
>	Ultimate shrinkage (microstrain)	588.5 (calculated)			
-					

- Agg Type
- Cementitious
- Drop down Mix dependent
- 594 lb/ft³ (Default) but can use projectspecific cementitious content from 200 – 800 lb/ft³
- Cement type
- w/cm

- I (Default, most common), II, or III
- Typically 0.4 0.45

~	Mix						
	Aggregate type	Limestone (1)					
	Cementitious material content (Ib/yd^3)	✓ 525					
	Cement type	Type I (1)					
	Water to cement ratio	✓ 0.42					
	Curing method	Curing Compound					
	Reversible shrinkage (%)	✓ 50					
>	PCC zero-stress temperature (deg F)	Calculated					
	Time to develop 50% of ultimate shrinkage (days)	✓ 35					
>	Ultimate shrinkage (microstrain)	588.5 (calculated)					

- Curing Method
- Curing compound (default) or wet curing

Reversible Shrinkage

- 50% (Good default)
- 0 Stress Temp. Calculated

~	Mix	
	Aggregate type	Limestone (1)
	Cementitious material content (Ib/yd^3)	✓ 525
	Cement type	Type I (1)
	Water to cement ratio	✓ 0.42
	Curing method	Curing Compound
	Reversible shrinkage (%)	✓ 50
>	PCC zero-stress temperature (deg F)	Calculated
	Time to develop 50% of ultimate shrinkage (days)	✓ 35
>	Ultimate shrinkage (microstrain)	588.5 (calculated)

- Time to 50% of
 35 days (Good default value) ultimate shrinkage
- Ultimate shrinkage

• 588.5 (mixture-specific, calculated or specific input)

Strength

PCC strength and modulus

Level:3 Rupture(550) Modulus(4000000)

PCC strength input level	E	`
28-Day PCC modulus of rupture (osi) 550	_
O 28-Day PCC compressive strengt	h (psi)	
28-Day PCC elastic modulus (psi	4000000	

• Strength

- Mixture dependent. Multiple ways to input.
 MOR = 500 -750 psi f'c = 3000 5500 psi
- Modulus (E)
- Mixture dependent. Typically ranges from 3.2
 5.0 x10⁶ psi (Estimations can be used*)

* <u>http://apps.acpa.org/applibrary/StrengthConverter/</u>

JPCP – Pavement Structure – Support Layers

×

AASHTOWare Pavement ME Design 2.3.1

Menu A X Progress 4 X Recent Files * Stop All Analysis ? 5 Run New Open SaveAs Save Save AI Close Exit Batch Import Export Redo Help Undo Explorer a x TAC Pavement ME Exa...:Project* TAC Pavement ME Exam ...: Traffic* TAC Pavement ME Exam...:Climate • × - Projects General Information Performance Criteria Limit Reliability E AC Pavement ME Examp Design type: New Pavement \sim Initial IRI (in/mile) 63 😑 🔴 Traffic Single Axle Distrib Jointed Plain Concrete ~ Pavement type: Terminal IRI (n/mile) 172 90 Tandem Axle Dist 15 JPCP transverse cracking (percent slabs) 90 Design life (years): 35 ~ Tridem Axle Distric Quad Axle Distribu Mean joint faulting (in) 0.12 90 Climate 2020 ~ Pavement construction: June V JPCP Design Propertie - Pavement Structure Traffic opening: Septen V 2020 V Material Layer Selection × Layer 1 PCC : JPC Special traffic loading for flexible pavements Layer 2 Non-stabil Insert layer below: Laver 1 PCC : JPCP Default Layer 3 Subgrade 📫 Add Layer 🎇 Remove Layer Non-stabilized Base (4) Layer type: ~ Project Specific Calibr Select material type Sensitivity O Import from file Select from default list Optimization ~ PDF Output Report 20 24 00 T Multiple Project Summary A-1-axel 🚞 Batch Run A-1-b xml Click here to edit Laver 1 PCC : JPCP Default A-24xml E Tools A-2-5xml ME Design Calibration Factors A-2-6 xml A-2-7xml A-3.xml Cold recycled asphalt - RAP (includes milings) xml Cold recycled asphalt - RAP pulverized in place xml Click here to edit Layer 2 Non-stabilized Base Crushed gravel.xml Crushed stone xml Permeable appregate xml River-run gravel xml 1 Click here to edit Laver 3 Subgrade OK Cancel > Error List **B** 3

AASHTOWare Pavement ME Design 2.3.1 Ø × A X Progress Φ× Menu Recent Files * Stop All Analysis ? 1 ¥. 10 -0 New Run Open SaveAs Save Save Al Close Exit Batch Help Import Export Undo Redo Explorer a × TAC Pavement ME Exa...:Project TAC Pavement ME Exam...: Traffic* TAC Pavement ME Exam...:Climate - X Projects General Information Performance Criteria Reliability Limit - J TAC Pavement ME Examp Design type: New Pavement ~ Initial IRI (in/mile) 63 - Traffic Jointed Plain Concrete ~ Single Axle Distrib Pavement type: Terminal IRI (in/mile) 172 90 Tandem Axle Disti Design life (years): 35 JPCP transverse cracking (percent slabs) 15 90 V Tridem Axle Distric Quad Axle Distribu 90 0.12 Mean joint faulting (n) Climate Pavement construction: June ~ 2020 ~ JPCP Design Propertie - Pavement Structure Traffic opening: Septen v 2020 v Layer 1 PCC : JPC Special traffic loading for flexible pavements Layer 2 Non-stabil Layer 3 Subgrade 🝁 Add Layer 🎉 Remove Layer JPCP Design Properties Project Specific Calibr 🔠 21 🖾 Sensitivity Optimization JPCP Design PDF Output Report PCC surface shortwave absorptivity 0.85 T Multiple Project Summary > Doweled joints Spacing(12), Diameter(1.5) Batch Run Click here to edit Layer 1 PCC : JPCP Default Erodibility index Fairly erodible (4) E-Cal Tools PCC-base contact friction Full friction with friction loss at (240) months > PCC joint spacing (ft) 15 Permanent curl/warp effective temperature difference (der -10 Sealant type Preformed Click here to edit Laver 2 Non-stabilized Base **Tied shoulders** Not tied Widened slab Not widened V Identifiers Click here to edit Layer 3 Subgrade PCC surface shortwave absorptivity This dimensionless parameter defines the fraction of available solar energy absorbed by the PCC surface. Use the default value of 0.85. Minimum 0.5 Maximum:1 > Error List a x

~	JPCP Design	
	PCC surface shortwave absorptivity	✓ 0.85
>	Doweled joints	Spacing(12), Diameter(1.5)
	Erodibility index	Fairly erodible (4)
>	PCC-base contact friction	Full friction with friction loss at (240) months
>	PCC joint spacing (ft)	15
	Permanent curl/warp effective temperature difference (deg	✓ -10
	Sealant type	Preformed
>	Tied shoulders	Not tied
>	Widened slab	Not widened

Let's Break it Down

JPCP Design
 PCC surface shortwave absorptivity

> Doweled joints

0.85
Spacing(12), Diameter(1.5)

- SSA
- Doweled Joints
- Diameter

• Spacing

- 0.85 (Default and semi-constant)
- Typically used if thickness > 8 in
- Often depends on thickness
 - 1 inch for 8 inches or less thickness
 - 1.25 inches for 8 10 inches thickness
 - 1.5 inches for >10 inches
- 12 inches is most common

	Erodibility index
>	PCC-base contact friction
>	PCC joint spacing (ft)

Fairly erodible (4) Full friction with friction loss at (240) months 15

- Erodibility
 Depends on soil conditions
 - Base Friction
 Good defaults
 - Joint Spacing Typical range = 12 20 ft

Effects of Joint Spacing

Permanent curl/warp effective temper	rature difference (de: 🗹 -10
Sealant type	Preformed
Tied shoulders	Not tied
Widened slab	Not widened

- Curl/Warp Temp.
 -10°F (Good default)
- Sealant Type
 Preformed or Other (none, liquid, silicone)
- Widened Slab
- Tied Shoulder
 Project dependent
 - Project dependent

Summary of Unique JPCP Critical Inputs

- Performance Criteria
 - IRI, cracking, faulting Levels
- Thickness
- Coef. of Thermal Exp. (CTE)
- Mix Design
 - Cement type, cementitious content, w/cm
- Strength
- Modulus

- Curing Method
- Joint Spacing
- Dowel Design
- Lane Width
- Shoulder Type
- Base Erodibility

JPCP Design Walk Through

MEPDG / DARWin-ME / AASHTOWare Pavement ME

New JPCP Design

- General Info
 - Design Life 35
- Traffic
 - TTC 8 traffic distribution
 - 8,000 AADTT
 - 3 Lanes with 75% in design lane
- Climate
 - Pitt, PA Climate

All other inputs left as defaults

• JPCP

- Thickness 11 in (280 mm)
- CTE 5.5*10⁻⁶/°F (9.9*10⁻⁶/°C)
- Limestone Agg
- Cementitious 525 lb/cy (311 kg/m³)
- MOR 550 psi (3.8 MPa)
- E 4,000,000 psi (27,600 MPa)
- Crushed Stone Agg Base
 - Thickness 8 in (203 mm)
- Subgrade
 - A-5 Defaults
- JPCP Design Properties
 - Dowel Diameter 1.5 in (38 mm)
 - Erodibility Index Fairly Erodible (4)

Outline

- Review of Pavement ME's Concrete Design Options
- JPCP Design Input Walkthrough
- Example Runs and How to Interpret Them
- Review of Critical Inputs
- Engineering Solutions
- ME Calibration Impact
- Additional Resources

Summary of Unique JPCP Critical Inputs

- Performance Criteria
 - IRI, cracking, faulting Levels
- Thickness
- Coef. of Thermal Exp. (CTE)
- Mix Design
 - Cement type, cementitious content, w/cm
- Strength
- Modulus

- Curing Method
- Joint Spacing
- Dowel Design
- Lane Width
- Shoulder Type
- Base Erodibility

Top 10 ME Design Most Sensitive

- 1. Concrete Flexural Strength at 28-Days
- 2. Concrete Thickness
- 3. Surface Shortwave Absorptivity (SSA)
- 4. Joint Spacing
- 5. Concrete Modulus of Elasticity at 28-Days
- 6. Design Lane Width with a 14 ft (4.3 m) Widened Slab
- 7. Edge Support via Widened Slab
- 8. Concrete Thermal Conductivity
- 9. Concrete Coefficient of Thermal Expansion (CTE)
- **10. Concrete Unit Weight**

Project 1-47

Sensitivity Evaluation of MEPDG Performance Prediction

Final Report

Prepared for the NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

> Charles W. Schwartz Rui Li University of Maryland

University of Maryland College Park, MD

Sung Hwan Kim Halil Ceylan Kasthurirangan Gopalakrishnan Iowa State University Ames, IA

December 2011

http://onlinepubs.trb.org/onlinepubs /nchrp/docs/NCHRP01-47 FR.pdf

Other Sensitivity Reports

	Pitt (Mu et al. 2011)	UW-Madison (Li and Cramer 2012)	OK State (Ley et al. 2012)	Iowa State (Ceylan et al. 2013)	Sensitivity in Common
Transverse <u>Cracking</u>	 Climate Jt spacing Base type Strength Thickness Traffic Edge support CTE 	 Thickness Strength CTE Traffic wheel location Traffic wander AADTT Truck% 	 CTE Strength Asphalt base Climate Unit weight Poisson's Thermal conductivity 	 Strength Thickness Jt spacing Width CTE Unit weight Poisson's Thermal conductivity 	 Strength (-) Thickness (-) Jt spacing (+) Slab width (-) CTE (+) Traffic (+) Edge support (-) Climate (n/a) Base support (n/a)
Joint <u>Faulting</u>	 Dowel Dia. Thickness CTE Base Erod. Traffic Wet days Jt spacing CTE 	• CTE • Dowel Dia.	 Edge support Dowel Dia. CTE Thickness Jt spacing 	 Dowel Dia. CTE Base Subgrade Climate 	 Dowel Dia. (-) CTE (+) Base Erod. (+) Traffic (+) Jt spacing (+) Thickness (n/a) Climate (n/a)

= Function (cracking, faulting, spalling, site factor)

Notes:

R

- 1. Grey indicates semi-constant values
- 2. (+)/(-) indicates the sign of the tangential slope of Δ (Distress) / Δ (parameter)

(Mu, 2017)

How Traffic Impacts JPCP Design?

- Just as rigid and flexible ESALs are different because of their different response...
 - Single, tandem and tridem axle groups (and at differing loads) cause differing relative damages
 - Single-axles usually cause more fatigue damage
 - Tandem and tridem axles usually cause more erosion damage

... so even within just rigid pavement design, ESAL count for same traffic spectrum and # of trucks in the design lane is really different for each distress type modeled!?!

Summary

- Only a handful (10 or less) of design inputs greatly impact a new JPCP design, which includes
 - Strength (-)

 - Slab width (-)
 - CTE (+)

- Traffic (+)
- Thickness (-) Edge support (-)
- Jt spacing (+)
 Dowel diameter (-)
 - Climate (n/a)
 - Base type (n/a)

(+)/(-) indicates the sign of the tangential slope of Δ (Distress) / Δ (parameter)

- A Pavement ME run can be established without the loss of accuracy by only determining these most sensitive inputs and leaving the others as default.
- The effort required to establish the inputs for a Pavement ME run is not • significantly greater than that for a AASHTO 1993 design.

Outline

- Review of Pavement ME's Concrete Design Options
- JPCP Design Input Walkthrough
- Example Runs and How to Interpret Them
- Review of Critical Inputs
- Engineering Solutions
- ME Calibration Impact
- Additional Resources

Engineering Solutions – Widened Slab Example

Engineering Solutions – Widened Slab Example

Engineering Solutions – Widened Slab Example

- Widening the slab reduces longitudinal edge midpanel stresses but this could increase stresses in other locations not considered in Pavement ME
- With 14 ft wide slab there is a much higher risk of longitudinal cracking due to increased stresses at interior transverse joint edge locations

Engineering Solutions – Base/Subbase Example

- In pavement ME, PCC thickness drives fatigue cracking performance.
- The contribution of base type and base thickness on cracking at higher PCC thickness is negligible.
- It is tempting to increase PCC thickness at the expense of base thickness/quality.

Engineering Solutions – Base/Subbase Example

- In Pavement ME, dowel bars drive faulting (and IRI) performance.
- The contribution of base type and base thickness on faulting in doweled pavements is negligible.
- It is tempting to not pay attention to base thickness/quality when dowels are used.

Engineering Solutions – Base/Subbase Example

- Rigid pavement performance requires uniform support that is free of any abrupt spatial and material changes.
 This is somewhat "baked" into the sections used for calibration.
- Base/subbase protects the subgrade from longterm degradation and provides uniform support to the concrete

Outline

- Review of Pavement ME's Concrete Design Options
- JPCP Design Input Walkthrough
- Example Runs and How to Interpret Them
- Review of Critical Inputs
- Engineering Solutions
- ME Calibration Impact
- Additional Resources

Calibration

AASHO Road Test Site is just 1 push pin on this map!

Calibrated Distress Performance Models

- Mechanistically computed response or damage is correlated to observed distress (empirical link) through <u>calibrated</u> performance equations
- Quality of the observations, statistical techniques used, and adequacy of the mathematical model used in calibration affect the behavior of the transfer function

Three National Calibrations For New JPCP So Far

Most JPCP designs have been done using the 2nd Calibration

JPCP 2006 Calibration

LTPP GPS-3 & RPPR JPCP Sections

LTPP SPS-2, MnROAD, & AASHO JPCP Sections

Local Calibration?

- Verification checking if "global" models work as intended locally
- Calibration changing "global coefficients" to "STATE local coefficients" that make distress & IRI predictions match State field measurements
 - May also include adjustment of some INPUTS (e.g., built-in temp, months of full friction)
- Validation checking that the "local" models works as intended (used 10% data)

Sounds Easy Enough, Right?

$$Fault_{m} = \sum_{i=1}^{m} \Delta Fault_{i}$$
$$\Delta Fault_{i} = C_{34} * (FAULTMAX_{i-1} - Fault_{i-1})^{2} * DE_{i}$$
$$FAULTMAX_{i} = FAULTMAX_{0} + C_{7} * \sum_{j=1}^{m} DE_{j} * Log(1 + C_{5} * 5.0^{EROD})^{C_{4}}$$
$$FAULTMAX_{0} = C_{12} * \delta_{curling} * \left[Log(1 + C_{5} * 5.0^{EROD}) * Log(\frac{P_{200} * WetDays}{P_{i}}) \right]^{C_{6}}$$

 $\sigma_{\rm 0} = \frac{E_{\rm PCC} \Delta \varepsilon_{\rm tot}}{2(1 - \mu_{\rm PCC})}$

n = traffic path.

he damage increments were discussed previously in this section.

he applied number of load applications $(n_{LRAm_{2}})$ is the actual number of axie type k of load real 1 hat possed through traffic path w under each condition (age, senson, and temperature ifference). The allowable number of load applications is the number of load cycles at which stigate fulnes is expected (corresponding to 50 percent slab cracking) and is a function of the pplied stress and PCC strength. The allowable number of load applications is determined using te following futigate model:

$$log(N_{i,j,k,l,m,n}) = C_1 \cdot \left(\frac{MR_l}{\sigma_{i,j,k,l,m,n}}\right)^{C_1} + 0.4371$$
 (3.4.10)

$$M_{Q,k_{\perp}} =$$
 allowable number of load applications at condition *i*, *j*, *k*, *l*, *m*, *n*
 $MR_{\ell} =$ PCC modulus of rupture at age *l*, psi
 $a_{Q,k_{\perp}} =$ applied stress at condition *l*, *j*, *k*, *l*, *m*, *n*
 $C_{1} =$ calibration constant = 2.0

C = calibration constant = 1.22

The fatigue damage calculation is a simple process of summing damage from each damage increment, except that a numerical integration scheme is used to accurately determine the effects of traffic wander. The fatigue damage at the critical damage location caused by an acle load placed at any random distance away from the pavement edge (point/) is given by the following:

$$D_g^* = P(COV_j) \cdot FD_g$$
 (3.4.11)

$IRI = IRI_I + C1 * CRK + C2 * SPALL + C3 * TFAULT + C4 * SF$

The probability of coverage is determined assuming normal distribution.

$$NORMDIST = \frac{1}{SD_{ref}} \sqrt{2\pi} e^{\frac{1}{2} \left(\frac{r-r}{\sigma}\right)^2} \qquad (3.4.12)$$

 $SCF = -1400 + 350 \cdot AIR\% \cdot (0.5 + PREFORM) + 3.4 fc \cdot 0.4$ - 0.2 (FTCYC \cdot AGE) + 43 h_{PCC} - 536 WC_Ratio

r = normal distribution density function.

 wheel location – distance from povement edge (or outside of the paint stripe for widened slab) to the outer edge of outermost wheel, in.

3.4.64

$$cw = Max \left(L \cdot \left(\varepsilon_{shr} + \alpha_{PCC} \Delta T_{\varsigma} - \frac{c_2 f_{\sigma}}{E_{PCC}} \right) \cdot 1000 \cdot CC, 0.001 \right)$$

Pavement ME Allows Agencies To Develop And Use Local Calibration Coefficients

Evolution P X / Deplect1-Deplect / Deplect1-Single / Deplect1-Sing	mate PieldNew
Explorer V Projects Project1:fraffic* Project1:firaffic*	Imate RigidNew ✓ 2 1.22 ✓ 0.52 2.17 3.5522 * Pow(CRACK,0.3415) = 0.75 ✓ 0.595 ✓ 0.595 ✓ 1.636 ✓ 0.00217 ✓ 0.00444 ✓ 250 ✓ 0.00444 ✓ 250 ✓ 0.00162 * Pow(FAULT,0.368) + 0.00806 ✓ 3.15 ✓ 28.35 ✓ 5.4 ✓ 0.8203 ✓ 0.4417 ✓ 1.4929 ✓ 25.24

You can save your local calibration coefficients as default or restore the national as default at one click

Local Calibration Examples

Indiana DOT:

• Changed JPCP IRI J3 from 1.4929 to 1.05 because it was too sensitive to it

• Ohio DOT:

• Changed JPCP IRI calibrations

Calibration Coefficient	Default (national)	Ohio
PCC IRI J1	0.8203	0.82
PCC IRI J2	0.4417	3.7
PCC IRI J3	1.4929	1.711
PCC IRI J4	25.24	5.703
PCC IRI JPCP Standard Deviation	5.4	5.4

Many states at this point are working on or have completed local calibrations.

Local Calibration Result In ½-In Or Less Difference In Required Thickness Vs. National Calibration

(Mu, 2017)

Simpler ME Option: Design Tables

-

		_		Hunc.	REPARDING	THE REALM OF POSSIBILITY				
				DEVE PAVEN M	ETHODOLOGY F LOPMENT OF EC MENT STRUCTUR ATRIX FOR MUN ROADWAYS	OR THE QUIVALENT RAL DESIGN NCIPAL S				
					INCLUDING MAINTENANCE &		t (AADTT) - 25 Year Pavement Design			
			-	REHABILITATION SCHEDULES AND LIFE				Major.	Arterial	
					CYCLE COST ANAL	LYSIS	2,500	5,000	7,500	10,000
	30 MPa (CBR=3)	PCC					200 mm PCC 200 mm Granular A	200 mm PCC 200 mm Granular A	210 mm PCC 200 mm Granular A	230 mm PCC 200 mm Granular A
		HMA					40 mm SP 12.5 FC1 110 mm SP 19 150 mm Granular A 450 mm Granular B	40 mm SP 12.5 FC1 120 mm SP 19 150 mm Granular A 600 mm Granular B	40 mm SP 12.5 FC1 130 mm SP 19 150 mm Granular A 600 mm Granular B	40 mm SP 12.5 FC2 140 mm SP 19 150 mm Granular A 600 mm Granular B
			_		Submitted to:	-				
Subgrade Strength	40 MPa (CBR=4)	PCC	January	18, 2011	Ready Mixed C Association of C Cement Associa	oncrete Ontario & ation of Canada	200 mm PCC 200 mm Granular A	200 mm PCC 200 mm Granular A	200 mm PCC 200 mm Granular A	210 mm PCC 200 mm Granular A
		HMA		J.	Cement Association Association Canadienn of Canada du Ciment	RMCAO	40 mm SP 12.5 FC1 100 mm SP 19 150 mm Granular A 400 mm Granular B	40 mm SP 12.5 FC1 120 mm SP 19 150 mm Granular A 450 mm Granular B	40 mm SP 12.5 FC1 130 mm SP 19 150 mm Granular A 500 mm Granular B	40 mm SP 12.5 FC2 140 mm SP 19 150 mm Granular A 550 mm Granular B
				5401 Egintur Avenue We	el, Suite # 105 Toronto, Ontario MSC 5	18 (hanspolielon@wa.com				
	50 MPa (CBR=5)	PCC	200 million Casallan A	200 mair Crassina A	Der Falkscon //	AN SPORTATION	200 mm PCC 200 mm Gramilar A	200 mm PCC 200 mm Granular A	200 mm PCC 200 mm Granular A	200 mm PCC 200 mm Granular A
		HMA	40 mm SP 12.5 80 mm SP 19 150 mm Granular A 300 mm Granular B	40 mm SP 12.5 80 mm SP 19 150 mm Granular A 300 mm Granular B	40 mm SP 12.5 FC1 80 mm SP 19 150 mm Granular A 300 mm Granular B	40 mm SP 12.5 FC1 100 mm SP 19 150 mm Granular A 300 mm Granular B	40 mm SP 12.5 FC1 100 mm SP 19 150 mm Granular A 350 mm Granular B	40 mm SP 12.5 FC1 110 mm SP 19 150 mm Granular A 400 mm Granular B	40 mm SP 12.5 FC1 130 mm SP 19 150 mm Granular A 450 mm Granular B	40 mm SP 12.5 FC2 140 mm SP 19 150 mm Granular A 500 mm Granular B
	Concrete Slab and Joint Properties		No d Slab len Tied shou	owels th = 4 m lder/curb *	32M Dowel bars Slab leng Tied shou	, 300 mm spacing th = 4.5 m Ider/curb *	32M Dowel bars Slab leng Tied shou	, 300 mm spacing th = 4.5 m Iden(curb *	32M Dowel bars Slab leng 0.5 m Widened outside	, 300 mm spacing th = 4.5 m e slab or integral curb *

Outline

- Review of Pavement ME's Concrete Design Options
- JPCP Design Input Walkthrough
- Example Runs and How to Interpret Them
- Review of Critical Inputs
- Engineering Solutions
- ME Calibration Impact
- Additional Resources

Resources

- NCHRP 1-37 MEPDG Home: http://onlinepubs.trb.org/onlinepubs/archive/mepdg/guide.htm Recorded Webinars: https://www.fhwa.dot.gov/pavement/dgit/aashtoware.pdf North American Usergroup Summary Page: http://www.pooledfund.org/Details/Study/549 ME Design Help: <u>http://www.me-</u> design.com/MEDesign/data/HTML%20Help/US/index.html?design_inputs_1.htm
- Application Library: <u>http://apps.acpa.org/</u>

Resources

Some States with Pavement ME User Guides

• Michigan:

https://www.michigan.gov/documents/mdot/MDOT_Mechanistic_Empirical_Pavement_Design_User_Guide_483676_7.pdf

- Colorado: <u>https://www.codot.gov/business/designsupport/matgeo/manuals/pdm/2017-m-e-pavement-design-manual/chapter-1.pdf</u>
- Indiana: http://www.in.gov/indot/design manual/files/Ch304 2013.pdf
- Arizona: https://apps.azdot.gov/ADOTLibrary/publications/project_reports/PDF/AZ606.pdf
- Virginia: http://www.virginiadot.org/VDOT/Business/asset_upload_file108_3638.pdf
- Utah: https://www.udot.utah.gov/main/uconowner.gf?n=20339215312776663

Continuously Reinforced Concrete Pavement (CRCP)

• Resources:

Check out crcpavement.org for more!

CONCRETE PAVEMENT

Design & Construction Guidelines

US Department of Transportation Redetal Highway Administration Continuously Reinforced Concrete Pavement:

Design Using the AASHTOWare Pavement

ME Design Procedure

PUBLICATION NO. FHMIA-HIF-13-025

US Department of Transportation Pedarad Highway Administration Office of Asset Managoment, Pasement, and Construction 1200 New Jersey Avenue, SE Washingtow, DC 10990 CONTINUOUSLY REINFORCED CONCRETE PAVEMENT MANUAL Guidelines for Design, Construction, Maintenance, and Rehabilitation

August 2016

Rasmussen et al. (2011)

Roesler & Hiller (2013)

Roesler et al. (2016)

THANK YOU! Questions?

Main Website | acpa.org Free Apps | apps.acpa.org Resources | resources.acpa.org Your Local Contact | local.acpa.org Pavement Design | PavementDesigner.org Jim Powell, P.E. Executive Director NW Chapter American Concrete Pavement Association jim@nwpavement.com 360-951-1463